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SUMMARY 

The main objectives of this paper will be to quantify the impact of gut microbiome 

composition on lean growth in swine and to quantify the heritability of relative taxa abundance in 

swine. The gut microbiome absorbed a significant portion of the phenotypic variation, ranging 

from approximately 3% for microbiome composition at weaning on ADG15 to more than 65% for 

microbiome composition at week 15 on ADG15. Point estimates for the heritabilities of the 57 

taxonomical families ranged from low to moderately high ranging from less than 5% to almost 

50%, according to family and time point. Different patterns of h2 (from low to high and vice versa) 

were observed across time for different families possibly reflecting the overall abundance of a 
particular family across the trial. 

 

INTRODUCTION 

Efficiency of producing saleable meat products is largely determined by costs associated with 

feed and by the amount of and quality of lean meat produced(Hoque et al., 2009),(Hoque et al., 

2008),(McGlone and Pond, 2003). Utilizing feed resources more efficiently has become a clear 

challenge that faces the livestock industry. Recent efforts have been devoted to identify and 

exploit the genomic variability of individual pigs in increasing feed efficiency(Jiao et al., 

2014a),(Jiao et al., 2014b) (Howard et al., 2015). While partially successful this approach presents 

limitations. First, feed efficiency is not a directly measurable trait. Instead it must be obtained from 

its components and it includes all traits associated with the efficiency of feed utilization, typically 
feed conversion ratio (FCR) or its reciprocal (feed:gain ratio) or RFI (Koch et al., 1963). These 

commonly used measures have inherent flaws (Arthur and Herd, 2008). More importantly, a 

continued effort concentrating only on the pig variability for efficiency will inevitably result in 

diminished marginal gains, incurring in concomitant losses of overall fitness and diversity over 

time(Colleau and Tribout, 2008). The amount and type of bacteria present in the gut of individuals 

represent a key part of all mammalian organisms (Gill et al., 2006). The makeup of the 

microbiome represents a vast pool of genomic diversity that contributes to the individual 

physiology and health (Pflughoeft and Versalovic, 2012). Particularly, the intestinal microbiome 

directly affects the degradation of carbohydrates, provides short chain fatty acids, mitigates and 

alter the effect of potential toxic compounds and produce essential vitamins(Gill et al., 2006). 

Different composition of the gut population in humans has been linked to the ability of degrading 

enzymes, maintain a certain population balance and influence the overall health status(Cho and 
Blaser, 2012). Relatively few full microbiome sequencing studies have been conducted in swine to 

date (Isaacson and Kim, 2012), while many studies have focused on either humans or model 

organisms. There is nonetheless a striking physiological similarity between the human and the 

swine intestine such that the second is currently successfully employed as model for the first (Odle 

et al., 2014), (Heinritz et al., 2013), (Zhang et al., 2013). Several studies comparing different 

geographical populations of humans and studies comparing different animal species have found 

that host genetic differences play a significant role in the composition of the microbiome. One 

study of tilapia, toads, geckos, quail, and mice tested changes in the microbiota of the colon and 

cecum after periods of fasting (Kohl et al., 2014). The study found that in most species, there was 
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more genetic diversity in the colon microbiome during a fast compared to a regular diet (Kohl et 

al., 2014). This suggests how environmental factors such as diet are not the only features keeping 

the microbiota balance but that other factors are at play most likely related to genetic. In the same 

study, results from the cecum found that in tilapia and toads, although there were initial changes in 

genetic diversity after the start of the fast, the microbiotic species returned to normal later in the 
fast (Kohl et al., 2014), again suggesting how the microbiota seem able to “self-regulate” without 

input from the environment. In the same study, mice showed no changes in the microbiotic 

composition during fasting (Kohl et al., 2014). In this case it appears that the microbiota might be 

completely controlled by the host genetic. Similar studies have been conducted in humans. For 

example Goodrich et al.(Goodrich et al., 2014a) found that twins’ fecal samples have a more 

similar microbiota composition than unrelated individuals, with monozygotic twins having a more 

similar composition than dizygotic. This again suggests that genetics might play a significant role 

in the microbiome composition. A study of samples of Columbian gut microbiome found that 

samples of people with a higher BMI had less Firmicutes while European gut microbiome did not 

show decreased Furmicutes (Escobar et al., 2014). Differences in microbiome between individuals 

of different BMIs seem to indicate a direct genetic influence.  A study of data from a twin study 

(Goodrich et al., 2014b) further linked human genotype and the composition of the gut 
microbiome. The study identified Christensenellaceae group as central to a network of co-

occurring heritable microbes that has been associated with lean body mass index (BMI)(Ley, 

2015). Numerous studies of rodents suggest that the gut microbiota populations are sensitive to 

genetic, and can produce or influence signals that directly or indirectly impact energy balance 

(weight gain or loss) and energy stores (Parks et al., 2013). Thus, the microbiota is certainly 

implicated in the development of obesity, and with tissue deposition in general. There are 

compelling arguments for the existence of a genetic control over the abundance of taxa in different 

species and the link of these with energy balance and growth. Currently some evidence has been 

presented in pigs. 
The main objectives of this paper will be to quantify the impact of gut microbiome 

composition on lean growth in swine and to quantify the heritability of relative taxa abundance in 
swine. 

 

MATERIALS AND METHODS 

From a Duroc closed-nucleus population 28 boars were selected to be sires of the individuals 

used in this trial. Sires were mated to crossbred sows to generate terminal-cross piglets. These 

were weaned at an average of 19 days of age and grouped in single-sire-gender pens (groups). 

During the nursery, growth and finish period, all pigs will be fed standard diets. End of test was 

declared on a pen-specific basis, entire pens of pigs were taken off test and sent for harvest at a 

pen mean live weight of 304.6 ± 5.51 lb.  

Live weight measurements were taken on individual pigs at the start (weaning) and end of the 

study and weeks 15, 18 and 22 post-weaning. Ultrasound back-fat depth and Longissimus muscle 

depth and area at approximately the 10th rib were measured on the right side of the pig on a 
transverse ultrasound scan taken at weeks 15, 18 and 22 post-weaning and at the end of the study. 

Fecal samples were taken for a total 1300 individual pigs at three time points. After editing, there 

were 3,783 fecal samples collected, including 15-24 days of age (1205 individuals), 115-124 days 

old (1295 individuals), and 180-217 days old (1283 individuals). Microbiome composition was 

obtained by amplifying the V6-V8 region of the 16S rRNA genes of the stool samples through 

pyrotag sequencing. After sequence processing and QC, there were 10,000 sequence reads per 

sample. Reads were organized into 2,026 phylotypes (operational taxonomic units, OTUs). Any 

taxonomic identifier with a confidence score below 80% was grouped as “unassigned”. The 2,026 

phylotypes were classified into 14 known phyla, 57 families, 112 genera and 213 species.  
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The bacterial composition of 3,783 samples was determined in each taxonomic level according 

to the read counts of the 2,026 taxonomically-annotated OTUs in each sample. The 3,783 samples 

were statistically compared according to their age range using the Kruskal-Wallis test. Further 

discrimination of grouping of the different taxonomical units was performed through principal 

component analysis (PCA). 
To investigate the divergence of microbial community at taxonomic species level, samples 

were clustered by age group and sex. All taxonomic units with unassigned genus and/or species 

were removed, leaving a total of 380 OTUs for this analysis.  

To highlight potential association between particular taxa combinations and 

growth/composition phenotypes, pseudo-enterotypes were obtained for growth and carcass 

composition through clustering of individuals and families.  

The overall contribution of microbiome to phenotypic variability was investigated through 

linear mixed models. Two traits were considered, average daily gain at market weight (ADGM), as 

well as average daily gain at 15 weeks (ADG15). For each of the traits a model that included fixed 

effects of sex, dam-line, contemporary group, back fat at market weight and random effects of 

permanent environmental effect, animal additive genetic effect (A), and residual, were fitted. This 

base line model was compared to a model that a random Microbiome (M) effect. Three 
microbiome compositions were fitted separately to the models representing the populations present 

at weaning 15 weeks of age and off-test.  

The host genetic control over microbiome composition was investigate at the family level. 

Second-degree polynomial random regression models utilizing 57 family abundance as the 

dependent variable were fitted. The models included time and sex and their interaction as fixed 

effect and random regression on animal and permanent environmental effects. All models were run 

with ASREML v.4.0.  

 

RESULTS AND DISCUSSION 

The bacterial composition of 3,783 samples was determined in each taxonomic level according 

to the read counts of the 2,026 taxonomically-annotated OTUs in each sample. The 3,783 samples 
were statistically compared according to age range. The Kruskal-Wallis test for differences in 

bacterial composition among the three age groups showed that 55 out of 57 bacterial families had 

significantly different (P<0.005) abundance counts between 15-24d and the rest of the samples. 

The proportion of the 10 most different families is presented in Figure 1. Similarly, the 115-124d 

and 180-217d groups were significantly different by 45 out of 57 families. The bacteria proportion 

of the 6 most different families is shown in Figure 2. At 15-24 d, the fecal bacteria were presented 

by three main phyla, Firmicutes (39.38%), Bacteroidetes (29.93%) and Proteobacteria (22.16%). 

Over time, the proportion of bacteria in the two phyla Bacteroidetes and Proteobacteria decreased, 

while the proportion of bacteria in the phylum Firmicutes pronouncedly increased to 72.71% and 

77.26% at 115-124 d and 180-217 d, respectively. Our findings agree well with the reports by Kim 

et al. (2011), Ivarsson et al. (2011), Dicksved et al. (2015).   
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Figure 1. Bacteria proportion of the 10 

most different families between 15-24d 

and 115-124d & 180-217d 

Figure 2. Bacteria proportion of the 6 most 

different families between 115-124d and 180-

217d groups 
 

Using principal component analysis (PCA), family-level bacterial composition data of 3,783 
samples over 3 time points were decomposed into two factors that explained 44.03% of the 

variance (Figure 3). Principal component 1 (PC1), which explained 31.26% of the variance, was 

heavily negatively loaded with Enterobacteriaceae, Bacteroidaceae, Fusobacteriaceae, 

Enterococcaceae, and Pasteurellaceae. Principal component 2 (PC2) was heavily loaded with 

Clostridiaceae and Enterobacteriaceae, and negatively loaded with Prevotellaceae and 

Fusobacteriaceae. 

 

 

Figure 3. Principal component analysis of bacterial families and 

the 10 largest loadings of bacterial families for PC1 and PC2. 
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Figure 4. Calinski-Harabasz indexes for number of clusters of samples from 115-124 d males 

(left) and 180-217 d males (right). Number of clusters on X-axis. The index on Y-axis. 
 

Samples of 115-124 d and 180-217 d female pigs clustered best into 3 groups whereas the male 

samples fit best into 5 groups as shown in Figure 4. Though the number of clusters by sex was 

similar between the 2 age groups, animals that grouped together during 115-124 d did not appear 

to remain in the same group in the later stage.  
We investigated the relationship between clusters of the OTUs and 180-217d animals with 

regard to fat depth measures. Animals and OTUs were clustered into 5 and 20 groups, 

respectively, as shown in Figure 5. Average estimated breeding values (EBV) was calculated for 

each animal cluster. The relative abundance of OTUs in groups 3, 5, 6, 8, 13, 16, 17 and 19 

appeared to be significantly correlated with fat depth EBV. 

 

 

Figure 5. A heatmap of relative abundance of bacterial clusters within pig’s fecal 

microbiome. Five animal clusters, 1 – 5, with animal counts of 10, 153, 180, 174, 92 

respectively. Average breeding value of fat depth for animals within each animal cluster is 

presented in parentheses next to cluster number. The 380 taxonomic units were clustered 

into 20 groups. Within each OUT cluster, level of redness shows average OTU count relative 

to other animal clusters. 

  

Microbiome contribution to the overall daily gain variability is reported on tables 1 and 2. For 

both traits measured (ADGM and ADG15) the gut microbiome absorbed a significant portion of 
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the phenotypic variation, ranging from approximately 3% for microbiome composition at weaning 

on ADG15 to more than 65% for microbiome composition at week 15 on ADG15. In both cases 

the largest amount of variance was absorbed when the composition at week 15 was fit. The 

microbiome effect eroded the most variance from the residual effect and PE, while a significant 

portion was also absorbed from the animal genetic effect.  
 

Table.1 Proportion of variances estimated for ADGM 

 A A+M (1) A+M (2) A+M (3) 

AIC 9855.71 9856.75 9842.15 9842.95 

PE (%) 11.52 10.47 7.15 6.54 

A (%) 13.20 12.65 6.07 7.29 

M (%) N/A 6.26 57.21 46.64 

Residual (%) 75.28 70.62 29.57 39.53 

N/A: Not available. 

AIC: Akaike information criterion. 

 (1), (2), and (3), representing microbial data at weaning, 15 weeks of age, and off-test, respectively. 

 

Table.2 Proportion of variances estimated for ADG15 

 A A+M (1) A+M (2) A+M (3) 

AIC 10217.89 10219.40 10182.36 10215.58 

PE (%) 15.36 14.40 7.20 12.88 
A (%) 11.11 10.90 3.51 9.60 

M (%) N/A 2.74 66.14 13.68 

Residual (%) 73.53 71.96 23.15 63.84 

N/A: Not available. 

AIC: Akaike information criterion. 
(1), (2), and (3), representing microbial data at weaning, 15 weeks of age, and off-test, respectively. 

 
 

Point estimates for the heritabilities of the 57 taxonomical families ranged from low to moderately 

high ranging from less than 5% to almost 50%, according to family and time point. Different 

patterns of h2 (from low to high and vice versa) were observed across time for different families 

possibly reflecting the overall abundance of a particular family across the trial. A plot of the h2 for 

a sample of the families fitted is presented in figure 6. 

 

 
Figure 6. h2 for a sample of the 57 microbiome taxonomical families represented 
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